Changing Trends in Birth Weight

Devinder Kaur, Amrit Pal Kaur, Rashmi

Department of Obstetrics and Gunaecology, Medical College, Amritsar.

Summary

One Thousand babies born consecutively at S.G.T.B. Hospital, Amritsar wan known gestational age, were studied to determine the influence of selected maternal factors on the birth weight. Average birth weight in the present study was 3.092 kgs. 63.2% of the mothers were having complications as toxaemia, andmia, antepartum hemorrhage, jaundice, heart disease, previous caesarean sections, Rh incompatibility, multiple gestation while 36.8% constituted the normal pregnancies. The incidence of LBW babies (<2500 gms) was 16.3% and it was significantly associated with low maternal age, severe toxaemia, anemia, APH heart disease. No significant association was seen with previous abortions, previous uterine scars, malpresentation, nulliparity, Rh isoimmunization while large for date babies were significantly associated with diabetes and polyhydramnios.

Introduction

Birth weight of an infant reflects the state of mothers health, not only when she has borne the said intant in her womb but even before it. In both developed and developing countries, an infant's birth weight is probably the single most important factor affecting neonatal mortality and morbidity.

The influence of maternal factors on the ottspring has been well documented. Thus, maternal biological factors such as age, parity, weight and height and pregnancy complications such as toxemia, anemia and chronic illness have all been recorded to cause low birth weight babies. The marked variability of birth weight in different countries and even in different parts of same country is due to the variation in these maternal factors and varied prevalence of complication.

SGTB Hospital is a tertiary care centre at Amritsar catering to the health needs of Amritsar district and the neighbouring areas of Punjab, which is the richest state in the country. This study results, obtained from the richer socio-economic strata are likely to be more representative of true potentials of our population, and recognition of influence of various maternal factors on pregnancy outcome may help us to improve the planning of prenatal care for Indian women and of the anticipatory care for our infants of "New Millenium"

Material and Method

The present study was conducted on 1000 babies delivered at SGTB Hospital Amritsar at, before or after term between March 1998 to May 1999. Cases with macerated still births and major lethal congenital anomalies were excluded. So were the cases where the

mother was not sure of her dates or there was discrepancy of gestational age clinically. Birth weight of all infants was recorded under similar conditions and statistically analysed regarding incidence of low birth weight and variation of birth weight with various maternal factors.

Observartions

Table I shows the distribution of cases in the present study. Overlapping of diseases associated with pregnancy was seen in 93 cases.

The average birth weight in the present study was 3.092 kg. In the normal cases it was 3.498 kg and in cases associated with medical or obstetrical disorders, it was 2.852 kgs.

Table II & III show the age wise and parity wise distribution of birth weight in normal cases and high risk pregnancies respectively. There is an increasing trend in birth weight with increasing age as well as parity and babies born to mothers in absence of any complication weighed heavier for same age and parity.

Table IV shows that incidence of low birth weight babies in different age groups. There was a significant association of LBW babies with mothers of

Table I: Incidence of Associated Complications

age less than 20 years. Such association could not be elicited in primipara females, though grand multipara did show a significant association.

Table-V depicts the distribution of birth weight in different socio-economic groups. A higher incidence of high risk pregnancies and low birth weight was obvious in lower socio-economic classes. The correlation was highly significant. Maximum (42%) of cases were of upper middle class and only 7.2% were having per capita monthly income of less than Rs.50/-

Table VI reveals the rewards of antenatal care in terms of good perinatal outcome. Ratio of booked to unbooked patients was 1.8 : 1, signifying greater awarness among population today.

Effect of fetal sex on birth weight is shown in Table VII. Male babies were weighing 329 gms more on an average than female babies. Sex ratio in present study was 1.25 : 1, and calls for a look into the matter of increasing female foeticide.

Short women typically have smaller children (Table VIII). Table IX shows the relation of associated complications of pregnancy with birth weight. As is evident from here, we see a significant association of

Total number of cases		· · · · · · · · · · · · · · · · · · ·		1000
Normal				368
Associated complications of p	regnancy			632
Anaemia		56		
Toxaemia	10.2	154		
PET	2	142	×	
Eclampsia		12		
Antepartum haemorrhage	,	48		
Rh isoimmunization	54	40		
Previous caesarean section		240		
Oligohydramnios		16		
Polyhydramnios		4		
Previous ectopics		4		
Malpresentation		48		
Twins		40	(20 pairs)	
Gestational & Insulin dependa	ant DM	8		
IUGR		16		
Fibroid uterus		8		
Jaundice		8		
Heart Disease		8		
Polio affected		8		
Short statured		8		
Precious pregnancy		4		
Previous hysterotomy		2		
Cervical stitch		4		
Epilepsy		1		

33

Devinder Kaur et al

Table II : Parity and	Age Group wise distr	ibution and mean birth	weights in normal cases.

			Age (Years)			
Parity	< 20	21-25	26-30	31-35	> 35	
)]						
No.	36	120	36		-	
Mean BW	3.224	3.419	3.468			
SD	0.547	0.484	0.330			
22						
No.	-1	36	16	8	-	
Mean BW	3.375	3.393	3.581	3.837		
SD .	0.104	0.474	0.469	0.372		
23						
No.	-	24	28	8	-	
Mean BW		3.415	3.632	4.244		
5D		0.504	0.375	0.352		
24						
No.	-	4	16	16	-	
Mean BW		4.150	3.419	4.100		
SID		0.000	0.689	0.518		
25 & above						
No.	-	4	4	4	-1	
Mean BW		4.000	2.663	4.000	3.824	
SD		0.000	0.825	0.000	0.150	

Table III : Party and Age Group wise Distribution and Mean Birth Weights in High Risk Pregnancies.

	<i>y</i> 0 1		,	0 0	0	
			Age (years)			
Parity	< 20	21-25	26 - 30	31 - 35	> 35	
Pl						
No.	52	112	20	4	-	
Mean BW	2.350	2.753	2.975	2.500		
SD	0.795	0.620	0.594	0.000		
P2						
No.	24	116	72	12	4	
Mean BW	2.733	3.000	3.219	2.567	3.900	
SD	0.769	0.578	0.850	0.629	0.000	
P3						
No.	4	60	60	16		
Mean BW	3.200	2.737	3.170	2.300		
SD	0.000	0.658	0.676	0.219		
P4						
No.	-	16	20	9		
Mean BW		2.650	2.837	2.375		
SD		0.650	0.309	0.133		
P5 & above						
No.	_	-1	24	4		
Mean BW		4.300	2.558	2.500		
SD		0.000	0.552	0.000		

ź

34

.

Table IV : Incidence of LBW Babies in Different Age Groups.

Age (Years)	Total cases	LBW	Percentage
Less than or			N .
Equal to 20	120	40	33.33
21-25	496	72	14.52
26 - 30	296	31	10.47
31 – 35	80	20	25.00
> 35	8	-	• _
Total	1000	163	16.30

Table V : Distribution of Cases as per Socio – Economic Status.

Class	Normal		High ris	sk group
	No. of Cases	Average BW	No. of cases	Average BW
Lower	4	2.500	68	2.229
Lower Middle	124	3.221	260	2.417
Upper Middle	184	3.603	236	3.082
Upper	56	3.638	68	3.741

Table VI : Effect of Antenatal Care on Incidence of Low Birth Weight Babies

	Total	Normal	Any Compl	Average BW	LBW	%age
Booked	648	244	404	3.303	55	8.49
Unbooked	352	124	228	2.697	108	. 30.68

For unbooked cases p < 0.001.

Table VII : Effect of Fetal Sex on Incidence of Low Birth Weight Babies.

	No. of Cases	Average BW	LBW	Percentage
Male	555	3.237	83	14.95
Female	443	2.908	80	18.06

For Fetal Sex, p > 0.05

Table VIII : Effect of Maternal Stature on Incidence of LBW Babies.

Height (in inches)	Total	Average BW	LBW	% age
< 56	12	1.667	8	66.67
56 – 60	328	2.793	83	25.30
61 - 65	652	3.251	72	11.04
> 65	8	4.275	-	-

For height < 56", p < 0.001.

LBW babies with severe anemia, APH, untreated toxemia, multiple pregnancies, oligohydramnios, IUGR, jaundice and heart disease. There was no association with previous LSCS, malpresentation, Rh – isoimmunisation. Large for date babies were associated with diabetes and polyhydramnios.

Discussion

The average birth weight of 3.092 kg in the present study is very much higher than that in other

parts of the country. Table X (Achar and Yankaner 1962; Mittal, et al 1976).

An improvement in health care system, an awareness in general population towards values of antenatal care and better health of mothers at the onset of reproducrtive life has helped to improve the birth weight of babies and decrease the perinatal mortality rate. The effect of various maternal factors including pregnancy complications on infants birth weight has remained unchanged.

35

Devinder Kaur et al

Table IX : Birth Weight Distribution in High Risk Cases.

Associated Complication	No. of	Average	LBW		Asso.	
	Cases	Birth wt			Compl.	
P. LSCS	240	2.910	16		-	
PIH – Pre-eclampsia	142	2.691	32		-	
Eclampsia	12	2.100	12	*		
Anaemia	56	2.275	32	*		
АРН	48	2.196	44	*		
Multiple gestation	40	2.245	28	*		
Malpresentations	48	2.973	8			
RH isoimmunisation	40	3.120	-			
Gestational DM	8	4.600	-		-	
Oligohydroamnios	16	2.087	12		IUGR (8)*	
Polyhydroamnios	4	3.900	-		-	
Previous ectopic	8	3.075	-			
Previous hysterotomy	2	2.500	-			
Cervical stitch	-1	2.750				
Precious Pregnancy	4	4.400	-			
IUGR	16	1.787	16	*		
Fibroid Uterus	8	3.400	-			
Jaundice	8	2.825	4	*		
Polio affected	8	2.950	-			
Short Stature	8	1250	8	*		
Epilepsy	1	2.000	1	*		
Heart disease	8		8	*		

^{*} p < 0.001.

Table X : Comparing Birth Weights in Different Cities of India.

		Birth wt Gms.
Indian infants in Madras (Achar, 1962)	Poor	2736
	Well to do	2948 - 3118
Indian infants in Calcutta		2610
Indian infants in Delhi	Poor	2780
	Well to do	2950
Indian infants in Ludhiana (Mittal et	al, 1976)	2974
Present study		3092

The incidence of LBW babies in present study was only 16.3%. A higher incidence of LBW infants viz (26.8%) was observed by Khatua et al (1979) and viz. 24.5% by Mittal et. al (1976) taking a cut off of 2500 gms.

The male to female ratio has inceased from 1.16 :1 (Khatua et al 1979) to 1.25 : 1, with male weighing more than females.

The association with various risk factors was in accordance with that of other studies Bhargava et al (1973); Fedrick & Adelstem (1978); Kruger et al, (1996), Verries et al, (1993) with minor variations. The predictive value of these associations were limited, but their recognition may improve the planning of prenatal care for Punjabi women and of the anticipatory care for their infants.

Reference

- 1. Achar ST : Yankauer A : Ind. J. Child Health: 11; 4, 157, 1962.
- 2. Bhargava SK ; Bhargava V ; Madhavan S ; Ghosh S : Ind. Pediatr. 10: 161, 1973.
- 3. Fedrick J ; Adelstein P : Brit. J. Obstet. Gynaec. 85: 1, 1978.
- 4. Khatua SP ; Manocha BK ; Chatterjee S ; Palodhi PKR : Ind. Pediatr 16: 5, 395, 1979.
- 5. Kruger N ; Kurth D; Dietz G ; Kruger I : Zentralbl. Gynakol. 118: 232, 1996
- 6. Mittal SK ; Singh PA ; Gupta RC : Ind. Pediatr. 13: 9, 679, 1976.
- Verrier M; Spears W; Ying J; Kerr GR: Tex. Med. 89: 51, 1993.

36